PROGRAM

Theoretical physics: Delta ITP course on Advanced Topics in Theoretical Physics - Deadline soon

Date:

Time:

Mondays 11:15 - 15:00 hrs

Location:

Leiden, Amsterdam & Utrecht

 

Delta Institute for Theoretical Physics (Delta ITP) is organizing a course in Advanced Topics in Theoretical Physics this fall. The course is divided into three 5-week modules, which will covers an introduction to information geometry and its applications, statistical physics of active matter and TBA.

Organization
Each module consists of four lectures and exercise sessions. Lectures will take place on Mondays at 11:15 - 13:00, followed by a study/exercise session from 13:45 - end. At the end of each module there is an exam. All exams are pass/fail, and you need to pass all three exams to receive credit for the course.

Location
We expect that in-person (or hybrid) teaching will be possible, with the location of this course rotating between the three institutes.  The first module is in Leiden. Directions to the institutes can be found here: Amsterdam, Utrecht, Leiden.

Students who do not have an OV-card from the Dutch government can have their travel costs reimbursed from D-ITP. Please contact the local coordinator for details.

Registration
Please register here before the course begins, even if you do not take the course for credit. We cannot process your grade or send important notices if you do not register.

Further information
More information and the contact details of the organizers can be found on this website.

Course schedule
Module 1: Introduction to information geometry and its applications
, Subodh Patil (Leiden)


Lectures and exercises: Sept 5, 12, 19, 26 (Oct 3 is Leiden holiday)
Exam: Oct 10
Location: lecture on Sept 5, 12: new Gorlaeus Building DM 115; lecture on Sept 19, 26: Huygens Lab 106; exercise sessions: Huygens Lab 207.

Abstract: 
Information geometry in a nutshell, is the geometrization of the study of families of probability distributions. It brings together statistics, information theory and differential geometry in a manner that not only reveals deep and surprising connections between them, but also has wide ranging applications that span topics as diverse as statistical inference and data analysis, machine learning, information theory, quantum measurement theory, statistical physics, biophysics and high energy theory to name only a sample.

The lectures will start with an introduction to classical information theory, statistical inference and then introduce the basics of information geometry before covering a broad range of applications in theoretical physics.

Module 2: Statistical Physics of Active Matter, Sara Jabbari Farouji (Amsterdam)

Lectures and exercises: Oct 17, 24, 31, Nov 7
Exam: Nov 14
Location: Science Park G5.29

Abstract: Active matter refers to any collection of entities that are individually capable of converting stored or ambient free energy to some sort of systematic movement. Examples include all living organisms and their motile constituents such as molecular motors.  The interplay between self-propulsion and interactions in active particles leads to emergence of non-equilibrium large-scale structures with novel dynamical properties. In this course, we will present some statistical physics models of active matter with minimal ingredients, which capture the basic phenomenology of non-equilibrium self-organization in active matter. We will combine the principles and tools of non-equilibrium statistical mechanics and particle-based Brownian dynamics simulations of active particles to provide a unifying view of emergent features of dynamical self-organization in active systems.

For these lectures, a basic knowledge of non-equilibrium statistical physics will be helpful. Reading materials and references will be provided throughout the lectures.

Module 3: TBA, Cris Morais Smith (Utrecht)

Lectures and exercises: Nov 21, 28, Dec 5, 12
Exam: Dec 19

Abstract: TBA